Entropy-based link prediction in weighted networks
نویسندگان
چکیده
منابع مشابه
Entropy-based link prediction in weighted networks
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 [31]), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on ...
متن کاملLink Prediction in Weighted Networks: A Weighted Mutual Information Model
The link-prediction problem is an open issue in data mining and knowledge discovery, which attracts researchers from disparate scientific communities. A wealth of methods have been proposed to deal with this problem. Among these approaches, most are applied in unweighted networks, with only a few taking the weights of links into consideration. In this paper, we present a weighted model for undi...
متن کاملLink prediction based on path entropy
Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, we first study the information entropy or uncertainty of a path using the information theory. Then we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which conside...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملProviding a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Physics B
سال: 2017
ISSN: 1674-1056
DOI: 10.1088/1674-1056/26/1/018902